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ABSTRACT: To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with
improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins
along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification.
Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended
protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli.
This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The
characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with
soy-derived food products.
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■ INTRODUCTION

Soybeans [Glycine max L. (Merr.)] are a major and inexpensive
source of protein for animal feed and are also an increasingly
important component of the diets of U.S. consumers.1 The
demand for soybean is mostly for oil and protein meal
production.2,3 Soybean proteins are used in human foods in a
variety of forms including baby formulas, flours, protein
isolates, concentrates, and textured fibers. The nutritional
quality and quantity of proteins in the soybean seed are higher
than in any other seed legumes. Soybean seed contains
approximately 40% protein and 20% oil on a dry weight basis.
Studies have shown a reduced risk of cancer, improved
cardiovascular disease risk factors, and other reduced chronic
illnesses in populations that consume soybeans and soy
products on a regular basis.4 Similarly, it is becoming the
vital ingredient for many industrial products and pharmaceut-
ical applications. However, soy foods also exhibit allergenic
properties to sensitive consumers. Allergenic reactions are
primarily due to antigenic proteins present in soybeans that
perturb normal metabolism and can interfere with digestion
and absorption of nutrients.5,6

To overcome future global food security challenges, it is
critical to develop new improved soybean varieties (both
quality and yield) and other crops using traditional breeding
and new genetic engineering methods. Genetic engineering
involves genetic modification (GM) by inserting a designed
gene with a known gene sequence intended to develop a
product with desired crop traits.7 All methods of genetic
modification change the quantity and/or quality of both
primary and secondary metabolites, namely, proteins, lipids,
carbohydrates, and isoflavones. Examples include reduction of

allergens and antinutrients along with increase of value-added
proteins, oil, and carbohydrates. However, like all new
technologies, all new soybean varieties must be evaluated for
safety and quality purposes. Several improved analytical
approaches including genetic, proteomic, and metabolic
profiling provide identification of protein and secondary
metabolite profiles in GM crops.8−10 These profiling
approaches are used for evaluating the variability of protein
profiles/expression due to genetic variables, environmental
factors, nutrient stress, breeding methods, and interaction
between genotype and environments.11−16 These data analyses
based on the natural variation of protein profiles are important
for understanding potentially significant bilogical differences
among GM and non-GM soybean varieties.11 In this review, we
discuss the benefits of analyzing new varieties in soybeans using
two-dimensional polyacrylamide gel electrophoresis (2D-
PAGE) and mass spectrometry (MS). Analyzing the qualitative
and quantitative variations of protein profiles in new varieties of
soybeans is paramount to assessing unintended effects that
might cause serious concern for soybean as food or feed.
Although 2D-PAGE-based proteome analysis is still used
widely, it has some limitations, including poor resolution of
protein separation particularly high acidic and basic proteins.17

These limitations have led to the development of gel-free MS-
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based proteomic techniques.18 One of the technologies enables
the identification of thousands of proteins in complex protein
mixtures by directly coupling liquid chromatography to tandem
mass spectrometry (LC-MS/MS), which is also referred to as
multidimensional protein identification technology (MudPIT).
Protein separation in MudPIT is also based on two dimensions
using a biphasic column. The first phase consists of an SCX
column followed by a reverse phase. MudPIT shows proteins
outside the typical detection range of proteins in a 2D gel
including hydrophobic proteins and proteins with higher
molecular weight or isoelectric point.19 Each technique offers
various advantages and disadvantages. However, currently there
is no single method that can provide quantitative and
qualitative information of all proteins in a complex mixture.
The choice of the methodologies to be used will depend on the
objective of the study. Although MudPIT technology is able to
identify many more proteins than the standard 2D gel-based
technique for studying environmental effects including
pathogens and other stress factors, proteins are better
separated, visualized, and quantified in 2D gels than in the
MudPIT approach.20 It is also well-known that MudPIT cannot
effectively separate abundant proteins from low-abundant
proteins and tends to miss those proteins which are likely
important enzymes regulating cell functions. In addition, unlike
in 2D gel-based approaches (i.e., DIGE), MudPIT is unable to
directly measure the relative abundance of proteins in different
proteome samples. However, application of multiple techniques
can provide complementary information.

■ BENEFITS OF GENETICALLY MODIFIED CROPS
Soybeans are used in the manufacture of a wide range of foods.
However, there may be some health-associated issues due to
the presence of allergens, including soybean hydrophobic
proteins, hull protein, profilin, vascular protein, glycinin, and β-
conglycinin, which affect some consumers.21−23 In addition,
soybean also contains some antinutrients, which limit its
suitability as a food or feed. These include Kunitz trypsin
inhibitors (KTI), lectins, protease inhibitors, phytin, and
lipoxygenase.24 Transgenic technology is a possible solution
to reduce or eliminate the problems associated with allergens
and antinutrients present in normal nongenetically engineered
soybeans. Herman et al.25 suppressed the expression of protein
Gly m Bd 30K, which is a less abundant allergen protein in
soybean. This protein is also referred to as P34, an
immunodominant soybean allergen. The authors used gene
silencing to prevent the accumulation of P34 and analyzed the
results by 2D-PAGE coupled with MS but could not detect any
differences in the protein profile other than the expected lack of
the P34 protein. Transgenic approaches have also been used to
benefit agriculture in producing quality traits by improving
productivity, enhancing herbicide tolerance, and developing
new value-added nutrients not present prior to modifica-
tion.25−28 Genetically engineered crops have been commer-
cially available since 1996. Crops containing transgenes are
carefully analyzed and regulated in the United States and other
countries. Several companies have applied transgenic tech-
nologies to modify soybean and produced new value-added
soybean varieties. Monsanto’s Roundup Ready soybean,
genetically modified to tolerate the herbicide glyphosate, is
the most recognized transgenic soybean product on the market
due to cost efficiencies for weed control. Other engineered
traits of soybean can be categorized as agronomic, improve-
ment in protein and oil quality, production of specialty oils,

removal of allergenic proteins, and pharmaceutical products
including γ-linolenic acid (GLA).29−36 It is likely that soybean
cultivars with a variety of transgenic modifications to enhance
quality and productivity will be developed in the future.
Therefore, it is important to determine if any unintended
changes occur in the soybean seed as a result of conventional
breeding/and or genetic modification. In 2010, the soybean
genome sequence became available, allowing risk assessment at
the whole genome level.37

■ IMPORTANCE OF PROTEOMIC ANALYSIS
Proteomic research and analysis are potentially useful for
examining alterations in protein profiles including stress
response proteins caused by mutations, introduction or
silencing of genes, or responses to various stress stimuli
including salt, drought, desiccation, cold, heat, mineral toxicity,
mineral deficiency, and others.38−41 In addition, proteomics has
been applied to analyze the differences in food proteomes
relevant to nutrition such as identification of markers for
specific food-processing technologies and quality of processed
food.41 Houston et al.42 quantified 10 soybean allergens such as
glycinins G1, G2, G3, and G4, glycinin precursor, Gly m 5 β-
conglycinin α subunit, Kunitz trypsin inhibitor 1 (KTI), and
KTI 3, Gly m bd 28K, and Gly m bd 30K from 20
nongenetically modified commercial varieties by mass spec-
trometry approaches. The authors used two quantitative
proteomic methods, namely, relative quantitation and absolute
quantitation (AQUA), to quantify 10 soybean allergens.
Relative quantitation was performed by spectral counting of
trypsin-digested protein samples using linear ion trap tandem
mass spectrometer (ProteomeXLTQ-ETD). The AQUA was
performed by multiple reaction monitoring (MRM) with
synthetic, isotope-labeled peptides as internal standards.
Peptides were synthesized with a single C13- and N15-labeled
lysine or arginine, depending upon the peptide sequence. For
AQUA, the authors used an Agilent 6410 triple-quadrupole MS
system coupled with an 1100 series LC system and an HPLC-
Chip cube. The authors concluded that MRM analysis reduced
technical variance of bovine serum albumin (BSA) internal
standards to ∼7%. The authors further reported that of 10
allergens, 4 allergens showed differential expression profiles
among 20 varieties of soybeans. Hajduch et al.43 used a
difference gel electrophoresis (2D DIGE) approach and
compared achene protein in near-isogenic sunflower. This
approach relies on the comparison of different protein samples
labeled with different fluorescent dyes. Regnier et al.44 reported
perspective regarding comparative proteomics based on stable
isotope labeling and affinity selection. In this process, they
compared experimental samples derived from any protein
modification state caused by diseases, external stimuli (drugs,
toxins), and mutations in proteins from Escherichia coli, rat,
cow, and human. The authors suggested that stable isotope
coding strategies are efficient to provide protein concentration
changes triggered by regulatory stimuli.
Proteomics encompasses many different subdivisions includ-

ing structural proteomics, which is in-depth analysis of protein
structure (high-throughput X-ray crystallography/modeling,
high-throughput NMR spectroscopy/modeling); expression
proteomics, which is an analysis of expression and differential
expression of proteins (electrophoresis, protein chips, DNA
chips, 2D-HPLC, mass spectrometry, microsequencing); and
interaction proteomics, which is an analysis of interactions
between proteins to characterize complexes and determine
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functions (HT functional assays, ligand chips, yeast 2 hybrid,
deletion analysis, motif analysis). Protein expression profiling
involves the combined applications of separation and
identification techniques such as 2D-PAGE, coupled with
mass spectrometry methods including liquid chromatography−
mass spectrometry (LC-MS) analysis or matrix-assisted laser
desorption ionization (MALDI-TOF-MS), and the use of
bioinformatics tools to characterize proteins in complex
biological mixtures. Separation of proteins by 2D-PAGE has
been practiced in laboratories for nearly 40 years, since its
development in 1975.45 2D-PAGE systems are a combination
of two different types of separation. In the first dimension, the
proteins are separated on the basis of protein isoelectric point
by isoelectric focusing (IEF). In the second dimension, the
focused proteins are further separated by electrophoresis on the
basis of protein molecular weight. 2D-PAGE is widely used to
examine the compositional differences of protein profiles from
various crop tissues including mature seeds, leaf, pulvinus,
embryonic axis, and germinated seeds.25,46−57 In addition,
proteomic-based technologies have been successfully applied to
the systematic study of the proteomic responses in many plant
species to a wide range of abiotic stresses, including drought,
nutrition deficiency, temperature, oxidative stress, herbicides,
wounds, anoxia, salt, and heavy metals.58−67 Furthermore,
Hajduch et al.68 employed a high-throughput proteomics
approach to determine the expression of different classes of
proteins during soybean seed filling. Although concerns have
been raised regarding the reproducibility and sensitivity of 2D-
PAGE results in characterizing all of the elements in a
proteome, this technique is still considered to be most suitable
for separating and visualizing proteins from a complex
mixture.20 The quality and discrete distribution of protein
spots depends primarily on the choice of sample preparation
method used for protein extraction.69 Sample preparation
greatly influences isoelectric focusing (IEF) in the first
dimension.70 Several publications are available for protein
extraction methodologies suitable for 2D-PAGE separa-
tion.25,71−76 The methods available for protein identification
have progressed dramatically in the past several years, which
resulted in several publications in plants, animals, and
humans.3,55,77,78 The traditional technique of Edman degrada-
tion to partially sequence an isolated protein has been replaced
by mass spectrometry. In MS/MS analysis, proteins are
enzymatically or chemically cleaved. The resulting peptides
are fragmented and ionized by different ionization methods
including MALDI or electrospray ionization (ESI). The
resultant data consist of mass over charge (m/z) values,
along with derived peptide sequence data in MS/MS mode,
which is then subjected to a sequence similarity analysis over
published databases. Recent advances in MS and the establish-
ment of protein databases derived from genome and tran-
scriptome sequence data have substantially increased the
accuracy of protein identification in enriched and complex
protein mixtures. These new techniques make it possible to
now perform high-throughput analysis of uncharacterized
protein isolates.79,80 Major advances in MS instrumentation
and the establishment of protein databases have substantially
increased the accuracy of protein profile characterization from
complex protein mixtures. Such analytical improvements also
have led to a better ability to identify and quantify
compositional changes associated with biological attributes
and with variables regarding agricultural practices. In addition,
the application of such techniques led to the recognition of the

complexity of the biological material within plant cells and that
the majority of plant chemical constituents have yet to be
identified and structurally characterized. The potential of these
modern and efficient methods in the detection of composi-
tional changes in plant tissues has been discussed in previously
published reviews by Kuiper et al.81,82 Fiehn and Koo et al.83,84

reported that plants are the most biochemically complex
organism that can produce a wide array of different classes
(lipids, carbohydrates, proteins, and other minor phyochem-
icals) of compounds. Therefore, several approaches and
methodologies (lipidomics, proteomics, or general metabolo-
mics) are often used, individually or in parallel, in attempt to
resolve, quantify, and identify compounds in plant tissues.

■ SOYBEAN SEED PROTEINS
Molecular characterization of soybean seeds at the protein and
DNA levels provides important data for assessing genetic
diversity.85 Results of the diversity patterns based on isozymes
and RFLP markers were similar86 and showed that wild
genotype Glycine soja is much more diverse than cultivated
Glycine max. The large amount of variation in seed composition
between wild and cultivated genotypes may be due to a
different complement of genes that control expression of β-
conglycinin and glycinin protein composition compared to
cultivated genotypes.87,88 Sebolt et al.89 reported that the wild
soybean has increased protein content that was associated with
a specific quantitative trait locus (QTL) allele. Soybean storage
proteins are grouped into two types, namely, β-conglycinin and
glycinin, based on the sedimentation coefficients. The β-
conglycinin, a 7S globulin, consists of three types of
nonidentical but homologous polypeptide subunits, namely,
α, α′, and β, with a molecular mass of 180 kDa.50 The α′
subunit consists of extension and core regions, whereas the β
subunit is composed of only the core region. All three subunits’
core regions exhibit high sequence identity with one another.
The extension regions of α and α′ subunits showed lower
identities than the core regions.50 In addition, β-conglycinin is a
multigene family of about 20 genes encoding these subunits,
therefore resulting in subunit variation among different
cultivars.90 Glycinin, a hexameric 11S globulin (360 kDa),
consists of acidic (A) and basic (B) polypeptides. Glycinin is
encoded by five nonallelic genes: Gy1, Gy2, Gy3, Gy4, and
Gy5. These genes code for five precursor protein molecules,
namely, G1, G2, G3, G4, and G5, respectively.91 In addition,
these five subunits are classified into two distinct major groups,
groups I and II, based on their physical properties, including the
identity of their amino acid sequences. The identities are ∼82−
86% within the groups and 42−45% between the groups.50

Group I subunits contain more methionine residues and consist
of G1 (A1aBx), G2 (A2B1a), and G3 (A1aB1b) proteins.
Group II contains G4 (A5A4B3) and G5 (A3B4) subunits.
Beilinson et al.92 identified and mapped an additional two genes
in soybean Resnik, namely, gy6 and Gy7. Koshiyama93 reported
that the storage protein glycinin (acidic and basic polypeptides)
showed genetic diversity among several soybean cultivars.
Heterogeneity in glycinin subunits due to deletions of the G4
and G5 genes has been reported among Japanese soybean
varieties.94 Variation of glycinin and β-conglycinin subunits
among 16 soybean genotypes including wild and cultivated
genotypes was reported by Natarajan et al.95 Saio et al.96

reported that the proportion of β-conglycinin and glycinin is
important and is responsible for the differences in the physical
properties of tofu gel. Fukuda et al.50 analyzed seed proteins
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from 390 lines of wild soybean to screen for genetic variants of
storage proteins using electrophoresis and reported variants of
glycinin and β-conglycinin subunits. In addition, the allergen/
antinutritional factors also varied between genotypes.97 In
contrast, Yaklich et al.98 reported that wild and cultivated
genotypes showed little difference in P34 allergens. Koo et al.84

screened several soybean accessions and found two soybean

accessions (PI 603570A and PI 567476) with low P34 allergen
by using immunoblot analysis. In addition, the authors analyzed
these two accessions in detail by proteomic analysis using 2D-
PAGE and MS and reported 19 differentially expressed proteins
between these two soybean accessions. Piper and Boote16

reported that maturity group, location, and environmental
variation affect characteristics of soybean seeds, which

Figure 1. Two-dimensional gel proteome maps of soybean seed proteins. The first-dimension IEF was performed using pH 3.0−10.0, 4.0−7.0, and
6.0−11.0 linear IPG strips. Numbered arrows indicate the polypeptides identified by mass spectrometry.

Table 1. Soybean Seed Proteins Identified by Mass Spectrometry Application

spot ID protein accession no. class

[1−7] α-subunit of β-conglycinin 9967357 storage/allergen
[8] α′-subunit of β-conglycinin 9967361 storage
[9−14] β-conglycinin β-subunit 63852207 storage
[15−17] glycinin Gl/AlaBx subunit 18635 storage
[18−25] glycinin G2/A2B1 precursor 1212177 storage/allergen
[26−33] glycinin subunit G3/AlablB 15988117 storage
[37−40] glycinin G4/A5A4B3 precursor 81785 storage
[41−47] glycinin G5/A3B4 subunit 33357661 storage
[50−51] P34 probable thiol protease 129353 allergen
[48−49], [57−60] soybean agglutinin 6729836/282898 antinutritional
[54−56] Kunitz trypsin inhibitor 3318877 antinutritional
[52−53] stress-induced protein SAM22 (allergen Gly m 4) 134194 allergen
[61−62] allergen Gly m Bd 28K 12697782 allergen
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suggested temperature has a significant effect on protein
expression.99,100 There are many papers available on the natural
variation of protein profiles by SDS-PAGE analysis of different
soybean genotypes.95,101,102 Natarajan et al.73 reported that
low-abundant soybean metabolic proteins varied among 16
different soybean genotypes including wild and cultivated using
proteomics. We have compiled the variation of different classes
of soybean seed proteins including storage, allergen, and
antinutritional proteins in wild and cultivated soybeans (Figure
1 and Table 1). We found significant variation of protein
between wild and cultivated soybean genotypes. The differ-
ential expression of proteins was reported in terms of number
of proteins, intensity, and appearance of protein spots.101,103,104

■ TRANSGENIC SOYBEAN CROPS
Soybeans can be transformed by microprojectile bombardment
or Agrobacterium-mediated transformation methods.105−107 In
2011, about 94% of the soybeans planted in the United States
were genetically modified for herbicide resistance, Roundup
Ready soybean.108 The Roundup Ready soybean was
demonstrated to have no significant differences in protein
profiles in comparison to nontransgenic soybean. However, the
levels of phytoestrogens were lower in genetically modified,
herbicide-tolerant soybeans compared to their isogenic conven-
tional soybeans grown under similar conditions using high-
pressure liquid chromatographic analysis.109 Other research
investigations showed that there are no effects of the CP4 5-
enolpyruvylshikimatae-3-phosphate synthase (CP4 EPSPS)
gene, which confers glyphosate resistance (GR) to contents
of isoflavone, antinutrients, and several different secondary
metabolites of soybeans.110−113 In addition, others have
produced transgenic soybean with reduced allergenicity or
added nutritional qualities. Similarly, a methionine-rich protein
of corn has been expressed in soybean with no significant
variation in protein profile.27 Kinney and Knowlton114 and
McCabe et al.115 studied seed protein profiles of a high-oleic
acid transgenic soybean line versus its normal counterpart and
reported no differences. Kim et al.116 developed a transgenic
soybean with overexpression of a cytosolic isoform of O-
acetylserine sulfhydrylase (OASS). The authors reported 4−10-
fold increases of OASS and also more accumulation of
Bowman−Birk protease inhibitor, a cystine-rich protein. In
another investigation, Qi et al.117 successfully produced
transgenic soybean seeds with enhanced threonine levels,
which is an essential amino acid not able to be synthesized by
humans and monogastric animals. In addition to high
production of threonine, these transgenic soybean seeds also
showed substantial increase of other major free amino acid
levels exhibiting normal seed morphology and germination
under greenhouse conditions. In another study, Kim et al.118

developed a line of transgenic soybean seeds through seed-
specific overexpression of two carotenoid biosynthetic genes,
namely, capsicum phytoene synthase and pantoea carotene
desaturase. The authors reported that the seeds showed a ∼62-
fold accumulation of β-carotene when compared to non-
transgenic soybeans. The authors concluded that the increase of
β-carotene was of the highest levels when compared with
previously reported results in Golden Rice 2, maize endosperm,
and potato tuber.
New and improved varieties of crops and agriculture

products are rapidly being introduced in the global market
place. Therefore, it is important to determine the variation in
protein content along with unintended changes that may occur

in the crop as a result of modifications or several different stress
stimuli. This mini-review provides an overview of benefits of
transgenic soybeans and the analysis of different soybean
proteins using 2D-PAGE and MS. The identification, character-
ization, and subsequent quantification of different classes of
soybean proteins will be useful for researchers, nutrition
professionals, and regulatory agencies to investigate changes in
the protein profiles and their impact on health.
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